A Novel Method of Searching Primitive Roots Modulo Fermat Prime Numbers

نویسندگان

  • Dalei Zhang
  • Hong Zhong
چکیده

Primitive root is a fundamental concept in modern cryptography as well as in modern number theory. Fermat prime numbers have practical uses in several branches of number theory. As of today, there is no simple general way to compute the primitive roots of a given prime, though there exists methods to find a primitive root that are faster than simply trying every possible number. We prove the equivalence between the primitive roots and the quadratic nonresidues modulo Fermat prime numbers. Therefore, the problem of searching primitive roots is transformed into solving the quadratic residues modulo Fermat primes, which is a much easier problem, having very simple solutions. Theoretical analysis and experimental results verify our conclusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Necessary and Sufficient Condition for the Primality of Fermat Numbers

We examine primitive roots modulo the Fermat number Fm = 22 m + 1. We show that an odd integer n 3 is a Fermat prime if and only if the set of primitive roots modulo n is equal to the set of quadratic non-residues modulo n. This result is extended to primitive roots modulo twice a Fermat number.

متن کامل

Fibonacci Primitive Roots and the Period of the Fibonacci Numbers Modulop

One says g is a Fibonacci primitive root modulo /?, wherep is a prime, iff g is a primitive root modulo/7 and g = g + 1 (mod p). In [1 ] , [2 ] , and [3] some interesting properties of Fibonacci primitive roots were developed. In this paper, we shall show that a necessary and sufficient condition for a prime/? ^ 5 to have a Fibonacci primitive root is p = 1 or 9 (mod 10) and Alp) = p 1, where/I...

متن کامل

Primitive Roots in Quadratic Fields Ii

This paper is continuation of the paper ”Primitive roots in quadratic field”. We consider an analogue of Artin’s primitive root conjecture for algebraic numbers which is not a unit in real quadratic fields. Given such an algebraic number, for a rational prime p which is inert in the field the maximal order of the unit modulo p is p2−1. An extension of Artin’s conjecture is that there are infini...

متن کامل

Transposition invariant words

We define an operation called transposition on words of fixed length. This operation arises naturally when the letters of a word are considered as entries of a matrix. Words that are invariant with respect to transposition are of special interest. It turns out that transposition invariant words have a simple interpretation by means of elementary group theory. This leads us to investigate some p...

متن کامل

Course 311: Michaelmas Term 2005 Part I: Topics in Number Theory

1 Topics in Number Theory 2 1.1 Subgroups of the Integers . . . . . . . . . . . . . . . . . . . . 2 1.2 Greatest Common Divisors . . . . . . . . . . . . . . . . . . . . 2 1.3 The Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . 3 1.4 Prime Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 The Fundamental Theorem of Arithmetic . . . . . . . . . . . . 5 1.6 The Infini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016